SCRAPYARD CHALLENGE Jr.

September 27, 2012
Open Hardware Summit, Eyebeam, NYC

Jonah Brucker-Cohen, Katherine Moriwaki, Louisa Campbell, Joe Saavedra, Liza Stark, Liz Taylor

School of Art, Media and Technology
Parsons, the New School for Design, New York, NY
SCRAPYARD CHALLENGE Jr.

Adapting an Art and Design Workshop to Support STEM to STEAM Learning Experiences

September 27, 2012
Open Hardware Summit, Eyebeam, NYC

Jonah Brucker-Cohen, Katherine Moriwaki, Louisa Campbell, Joe Saavedra, Liza Stark, Liz Taylor

School of Art, Media and Technology
Parsons, the New School for Design, New York, NY
SCRAPYARD CHALLENGE Jr. OVERVIEW
Informal learning experience for youth ages four through 12 and their families utilizing the integration of art, design, and technology to deliver STEM concepts.
Informal learning experience for youth ages four through 12 and their families utilizing the integration of art, design, and technology to deliver STEM concepts.

Developed from the “Scrapyard Challenge” workshops where participants build novel and expressive electronic objects using found materials and junk.
BACKGROUND:
SCRAPYARD CHALLENGE WORKSHOPS
Since 2003, the Scrapyard Challenge workshops have been held 55 times in 14 countries across the 5 continents of Europe, South America, North America, Asia, and Australia.
Scrapyard Challenge was created to teach basic electronic principles and interaction design to non-technical audiences.
Scrapyard Challenge was created to teach basic electronic principles and interaction design to non-technical audiences. Oriented primarily towards adults, artists, and other creative practitioners to design, implement, and build novel and expressive musical controllers out of found materials and junk.
Typical Workshop Table
Amsterdam, 2006
SCRAPYARD CHALLENGE: MOTIVATION

DEMOCRATIZATION OF TECHNOLOGY

Typical Workshop Table
Amsterdam, 2006
DEMOCRATIZATION OF TECHNOLOGY

SCRAPYARD CHALLENGE: MOTIVATION

Typical Workshop Table
Amsterdam, 2006
DEMOCRATIZATION OF TECHNOLOGY

DO IT YOURSELF: DIY

SCRAPYARD CHALLENGE: MOTIVATION
DEMOCRATIZATION OF TECHNOLOGY

DO IT YOURSELF: DIY

SCRAPYARD CHALLENGE: MOTIVATION

HACKING
DEMOCRATIZATION OF TECHNOLOGY

DO IT YOURSELF: DIY

HACKING

POPULAR CULTURE
DEMOCRATIZATION OF TECHNOLOGY

DO IT YOURSELF: DIY

HACKING

POPULAR CULTURE

REMIX CULTURE

SCRAPYARD CHALLENGE: MOTIVATION
BACKGROUND: SCRAPYARD CHALLENGE
BACKGROUND: SCRAPYARD CHALLENGE
BACKGROUND: SCRAPYARD CHALLENGE

LIMITED TIME FRAME
BACKGROUND: SCRAPYARD CHALLENGE

LIMITED TIME FRAME

urgency,
BACKGROUND: SCRAPYARD CHALLENGE

LIMITED TIME FRAME

urgency, improvisation,
BACKGROUND: SCRAPYARD CHALLENGE

LIMITED TIME FRAME
urgency, improvisation, shared experience
BACKGROUND: SCRAPYARD CHALLENGE

LIMITED TIME FRAME
urgency, improvisation, shared experience

UNPREDICTABLE MATERIALS
BACKGROUND: SCRAPYARD CHALLENGE

LIMITED TIME FRAME
- urgency, improvisation, shared experience

UNPREDICTABLE MATERIALS
- cheap sources!
BACKGROUND: SCRAPYARD CHALLENGE

LIMITED TIME FRAME
urgency, improvisation, shared experience

UNPREDICTABLE MATERIALS
cheap sources! discarded electronics
BACKGROUND: SCRAPYARD CHALLENGE

LIMITED TIME FRAME
urgency, improvisation, shared experience

UNPREDICTABLE MATERIALS
cheap sources! discarded electronics

SIMPLE INPUT/OUTPUT
BACKGROUND: SCRAPYARD CHALLENGE

LIMITED TIME FRAME
urgency, improvisation, shared experience

UNPREDICTABLE MATERIALS
cheap sources! discarded electronics

SIMPLE INPUT/OUTPUT
microcontrollers & MIDI,
BACKGROUND: SCRAPYARD CHALLENGE

LIMITED TIME FRAME
urgency, improvisation, shared experience

UNPREDICTABLE MATERIALS
cheap sources! discarded electronics

SIMPLE INPUT/OUTPUT
microcontrollers & MIDI, “musical guests”
Early considerations included the high technical learning curve, financial cost, and specialized knowledge required to create interactive electronic objects, and the need for greater fluency with and understanding of interaction design.
Early considerations included the high technical learning curve, financial cost, and specialized knowledge required to create interactive electronic objects, and the need for greater fluency with and understanding of interaction design.

Goal: to eliminate these constraints to introduce electronics to novices
Early considerations included the high technical learning curve, financial cost, and specialized knowledge required to create interactive electronic objects, and the need for greater fluency with and understanding of interaction design.

BACKGROUND: SCRAPYARD CHALLENGE

Goal: to eliminate these constraints to introduce electronics to novices
SCRAPYARD CHALLENGE Jr.!
SCRAPYARD CHALLENGE Jr. INTRODUCTION
SCRAPYARD CHALLENGE Jr. INTRODUCTION
There is increased momentum towards integrating art and design into STEM education...
There is increased momentum towards integrating art and design into STEM education...

This movement "from STEM to STEAM" provides intriguing opportunities to leverage art and design in order to interest broader audiences in engineering and science.
There is increased momentum towards integrating art and design into STEM education...

This movement "from STEM to STEAM" provides intriguing opportunities to leverage art and design in order to interest broader audiences in engineering and science.

Creative engagement can produce an integrated understanding of materials, electronics, and systems.
Three hour Saturday workshop for two high-needs STEM elementary schools in New York City.
Three hour Saturday workshop for two high-needs STEM elementary schools in New York City.

60 pre-makers attending, a group comprised of children ages four through eleven and their families.
Three hour Saturday workshop for two high-needs STEM elementary schools in New York City.

60 pre-makers attending, a group comprised of children ages four through eleven and their families.

Multi-generational learning with teen facilitators there to assist the authors.
SCRAPYARD CHALLENGE Jr. BOARDS

Scrapyard Challenge Jr. 555 Noisemaker Kit

INPUTS

analog circuit

digital circuit

OUTPUTS

8-ohm speaker (included w/kit)
1/8" audio jack for headphones or speakers

POWER

9-volt battery
9-volt wall plug
NoiseMaker Board

Scrapyard Challenge Jr. 555 Noisemaker Kit

INPUTS

9-volt battery

POWER

9-volt wall plug

OUTPUTS

8-ohm speaker (included w/kit)

1/8" audio jack for headphones or speakers
NoiseMaker Board

Kit designed as a simple tool for generating sonic output with minimal and modular input.
NoiseMaker Board

Kit designed as a simple tool for generating sonic output with minimal and modular input.

Designed to be low-cost, creating an opportunity for curriculum to be developed around basic fabrication skills including soldering, circuit design, and enclosure prototyping.
SCRAPYARD CHALLENGE Jr. BOARDS

NoiseMaker Board Version 2.0

Digital Input
Analog Input
Knob
Headphones
Power
On Board Speaker
NoiseMaker Board Version 2.0 Modified feature set specifically designed for young children and their families

- Digital Input
- Analog Input
- Knob
- Headphones
- Power
- On Board Speaker
Scrappyard Challenge Jr. Boards

NoiseMaker Board Version 2.0
Modified feature set specifically designed for young children and their families

- 1 Digital Input, 1 Analog Input

- Headphones
- On Board Speaker
- Knob
- Power
NoiseMaker Board Version 2.0
Modified feature set specifically designed for young children and their families

- 1 Digital Input, 1 Analog
- Variable tones with knob
NoiseMaker Board Version 2.0
Modified feature set specifically designed for young children and their families
- 1 Digital Input, 1 Analog
- Variable tones with knob
- On board speaker
NoiseMaker Board Version 2.0
Modified feature set specifically designed for young children and their families

- 1 Digital Input, 1 Analog
- Variable tones with knob
- On board speaker
- External amplifier / headphone jack
NOISEMAKER BOARD LEARNING OUTCOMES

ANALOG: The analog input demonstrates the concepts of resistance and conductivity within a single circuit.
NOISEMAKER BOARD LEARNING OUTCOMES

ANALOG: The analog input demonstrates the concepts of resistance and conductivity within a single circuit.

The amount of resistance passing through their circle instantly affects the pitch of the sounds heard.
NOISEMAKER BOARD LEARNING OUTCOMES

ANALOG: The analog input demonstrates the concepts of resistance and conductivity within a single circuit.

The amount of resistance passing through their circle instantly affects the pitch of the sounds heard.

DIGITAL: The digital input illustrates a closed versus open circuit. When a connection is made between the two poles, as simple as clapping two bands of aluminum foil together in the noisy stuffed animal project, sound is emitted.
SCRAPYARD CHALLENGE Jr. ACTIVITIES
SCRAPYARD CHALLENGE Jr. ACTIVITIES
BOTTLE VIOLIN
BOTTLE VIOLIN

Comprised of a pre-made resistor chain, wires, tape, cardboard, and one 20 oz bottle of saltwater.
BOTTLE-violin

Comprised of a pre-made resistor chain, wires, tape, cardboard, and one 20 oz bottle of saltwater.

Makers connect the chain to the analog input of the Noisemaker Board and **dip the chain into the salt water** to create a chain of changing sounds.
BOTTLE VIOLIN

Comprised of a pre-made resistor chain, wires, tape, cardboard, and one 20 oz bottle of saltwater.

Makers connect the chain to the analog input of the Noisemaker Board and dip the chain into the salt water to create a chain of changing sounds.

Learning: activity emphasizes that electricity (or a current) always takes the path of least resistance, while also showing that electrical energy can be transformed into sound.
BOTTLE VIOLIN
STUFFED ANIMAL DRUMS
STUFFED ANIMAL DRUMS

2 strips of aluminum foil, wires, copper conductive tape (used instead of solder for younger kids), stuffed animal
STUFFED ANIMAL DRUMS

2 strips of aluminum foil, wires, copper conductive tape (used instead of solder for younger kids), stuffed animal

Aluminium foil is banded around the limbs of the animal and serve as switches connect to the digital inputs of the board - so that when a child claps the arms together they close the switch and create sound
STUFFED ANIMAL DRUMS
STUFFED ANIMAL DRUMS
Scrapyard Challenge Jr., Parsons School of Design, New York, NY, January 28, 2012, 12 to 4 p.m.
Kids 4 to 6 year olds
SCRAPYARD CHALLENGE Jr. WORKSHOPS
Middle schoolers - 7 & 8th grade
SCRAPYARD CHALLENGE Jr. WORKSHOPS
SCRAPYARD CHALLENGE Jr. as an informal learning experience with roots in hacker and maker spaces and the remix cultures surrounding them.
SCRAPYARD CHALLENGE Jr. as an informal learning experience with roots in hacker and maker spaces and the remix cultures surrounding them.

Learning spaces: outside classrooms and other formal settings
SCRAPYARD CHALLENGE Jr. as an informal learning experience with roots in hacker and maker spaces and the remix cultures surrounding them.

Learning spaces: outside classrooms and other formal settings

We emphasize participant-driven learning and application of more theoretical concepts through the creative making process.
SCRAPYARD CHALLENGE Jr. FRAMEWORK
WE FOCUS ON 4 POINTS OF EVALUATION
WE FOCUS ON 4 POINTS OF EVALUATION

Excitement and interest levels in learning about how the physical world works
WE FOCUS ON 4 POINTS OF EVALUATION

Excitement and interest levels in learning about how the physical world works

The nature of scientific enterprise
WE FOCUS ON 4 POINTS OF EVALUATION

Excitement and interest levels in learning about how the physical world works

The nature of scientific enterprise

Engagement in scientific practices
Excitement and interest levels in learning about how the physical world works

The nature of scientific enterprise

Engagement in scientific practices

The degree to which participants self-identify as science learners.
SCRAPYARD CHALLENGE Jr. OBSERVATIONS

2. Young age group necessitated external guidance from parents who become active participants in their learning.

2. Young age group necessitated external guidance from parents who become active participants in their learning.

3. An unexpected outcome of the workshop was the level of engagement exhibited by the parents.

2. Young age group necessitated external guidance from parents who become active participants in their learning.

3. An unexpected outcome of the workshop was the level of engagement exhibited by the parents.

4. Parents saw the workshop as a venue for shared learning, along with the reinforcement of school curriculum.
1. **STEAMD** approach to informal science learning nurtures multigenerational learning by virtue of its **scalability**, both in concepts learned and personal interest.
1. STEAMD approach to informal science learning nurtures multigenerational learning by virtue of its scalability, both in concepts learned and personal interest.

2. Element of choice intrinsic to workshop activities: not only did participants choose the stations that interested them most, they also chose how to approach each project.
1. STEAMD approach to informal science learning nurtures multigenerational learning by virtue of its scalability, both in concepts learned and personal interest.

2. Element of choice intrinsic to workshop activities: not only did participants choose the stations that interested them most, they also chose how to approach each project.

3. Teen facilitators made connections between their own background in art and design; parents guided students through different activity steps and learned new concepts in the process.
SCRAPYARD CHALLENGE Jr. DISCUSSION
As educators, artists, and designers who work comfortably within the iterative design process, we recognize and embrace the emergent learning that arises
As educators, artists, and designers who work comfortably within the iterative design process, we recognize and embrace the emergent learning that arises.

By confronting challenges such as faulty circuits or loose connections, participants were forced to solve problems that only manifest through the process of building.
As educators, artists, and designers who work comfortably within the iterative design process, we recognize and embrace the emergent learning that arises.

By confronting challenges such as faulty circuits or loose connections, participants were forced to solve problems that only manifest through the process of building.

We designed experiences that offer a constructive challenge to participants.
SCJ version 1.0 was designed to gauge interest in multigenerational learning in STEAMD tinkering activities.
SCJ version 1.0 was designed to gauge interest in multigenerational learning in STEAMD tinkering activities.

Future versions will primarily target tweens.
SCJ version 1.0 was designed to gauge interest in multigenerational learning in STEAMD tinkering activities.

Future versions will primarily target tweens.

Evaluator in our next phase to establish a baseline against which to measure learning.
SCJ version 1.0 was designed to gauge interest in multigenerational learning in STEAMD tinkering activities.

Future versions will primarily target tweens.

Evaluator in our next phase to establish a baseline against which to measure learning

Already designed the next generation Noisemaker.
SCJ version 1.0 was designed to gauge interest in multigenerational learning in STEAMD tinkering activities.

Future versions will primarily target tweens.

Evaluator in our next phase to establish a baseline against which to measure learning.

Already designed the next generation Noisemaker.

Could evolve to include simple lessons around basic concepts of audio wave forms and audio theory.
Jonah Brucker-Cohen, Katherine Moriwaki, Louisa Campbell, Joe Saavedra, Liza Stark, Liz Taylor

School of Art, Media and Technology
Parsons, the New School for Design, New York, NY
Jonah Brucker-Cohen, Katherine Moriwaki, Louisa Campbell, Joe Saavedra, Liza Stark, Liz Taylor

School of Art, Media and Technology
Parsons, the New School for Design, New York, NY
THANKS!

Jonah Brucker-Cohen, Katherine Moriwaki, Louisa Campbell, Joe Saavedra, Liza Stark, Liz Taylor

School of Art, Media and Technology
Parsons, the New School for Design, New York, NY
THANKS!

Twitter: @scrapchall

jr.scrapyardchallenge.com

Jonah Brucker-Cohen, Katherine Moriwaki, Louisa Campbell, Joe Saavedra, Liza Stark, Liz Taylor

School of Art, Media and Technology
Parsons, the New School for Design, New York, NY
THANKS!

Twitter: @scrapchall

jr.scrapyardchallenge.com

QUESTIONS? COMMENTS?

Jonah Brucker-Cohen, Katherine Moriwaki, Louisa Campbell, Joe Saavedra, Liza Stark, Liz Taylor

School of Art, Media and Technology
Parsons, the New School for Design, New York, NY